JOURNAL OF COMIUTATIONAL PHYSICS TO5, 150164 (1993)

The Treatment of Spurious Pressure Modes in Spectral
Incompressible Flow Calculations

TiMOTHY N. PHILLIPS AND GARETH W. ROBERTS*

Department of Mathematics, University of Wales, Aberystwyth, Aherystwyth SY23 3BZ, United Kingdom

Received Decemtber 5, F990; revised June 10, 1992

Algorithms for the transient and steady state simulation of incom-
pressible Newtonian and non-Newtonian flows are described for the
primitive variable formulation of the governing equations. Spectral
approximations are used for the spatial discretization. Attention is given
to the satisfaction of the incompressibility constraint and the deter-
minaticn of the pressure. Spurious pressure modes are removed by
means of a singular value decomposition. The corresponding velocity
field is divergence free at all the collocation points. Numerical results
are presented for Newtonian flow in a regularized driven square cavity
and for non-Newtonian flow in a planar channel and in a journal
hearing for a realistic range of material parameters.  © 1993 Academic
Press, Inc.

L INTRODUCTION

The time-dependent incompressible Navier-Stokes
equations in primilive variable form are usually written as

av

y +v.Vv= —Vp+uViy,
(

(1}
(2

where v = (u, v) is the velocity vector, p is the pressure, and
v the kinematic viscosity. Equations (1) and (2) are the
mathematical statements of the conservation of momentum
and mass, respectively. We sometimes refer to (2) as the
continuity equation or the incompressibility constraint.
These equations are solved in a domain £ subject to
velocily boundary conditions and initial conditions of the
form

VX, ) = vy(x) in £2,

(3)
ICis important that the initial velocity field is divergence-
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free; otherwise the continuous problem does not possess
a classical solution {Heywood and Rannacher [187)
Furthermore, this field needs to be compatible with the
momentum equation (1) to avoid singularities at the initial
time (Deville et al. [11]). In the general case, however,
singularities in the tangential velocity component on no-slip
walls at the initial time are unavoidable and vortex sheets
arc the result (Gresho [ 15]). The numerical algorithm does
nol gencrally need to be designed to have sufficient damping
propertics to handle the initial singularities during the
beginning of the time-integration process since the viscous
term, which is the physical damping mechanism, is sufficient
to properly smooth them out. For this reason it is not
necessary 10 add additional dissipation to the numerical
algorithm and so the trapezoidal rule may be used, for
example,

The main difficulty in solving these equations numerically
is the treatment of the pressure. Unlike the velocity
variables there is no evolution equation for the pressure.
Instead it is determined by the incompressibility constraint
(2). In fact the pressure may be viewed as a Lagrange mulii-
plier which ensures that the flow is divergence-free. Penalty
methods, sometimes known as antificial compressibility
methods, circumvent this difficulty by adding a [false
pressure time-derivative into the continuity equation
(Chorin [8], Temam [31], Yanenko [32]). The idea
underlying the method is to consider the solution of the
steady equations as the limit as t — oo of the solution of the
unsteady equations in which the continuity equation is
perturbed to obtain a system of evolution eguations which
can be casily solved by standard numerical techniques.
Chorin [8] writes the perturbed equation in the form

op

+ eV .oy =0,
01

where ¢ is a constant chosen to ensure the convergence of
the system to the steady state solution. The method can be
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termed a pseudo-unsteady method since the time ¢ has no
physical significance. Furthermore, the incompressibility
constraint is only satisfied when the steady state is reached
and therefore is inadequate for reliable transient simula-
tions. Fortin, Peyret, and Temam [ 13] show that the exact
solution of the unsteady Stokes problem converges to the
solution of the steady Stokes problem.

The formulation of the Poisson equation for the pressure
is the main alternative to the penalty method and represents
the mode of pressure determination that is most widely
used in finite difference and spectral simulations of
incompressible flows. If we take the divergence of (1) and
impose (2} we obtain the Poisson equation

Vip=—V.-(v-Vv) 4)

The pressure problem is well pased if we have one condition
specified on d¢2, the boundary of 2. However, at a no-siip
boundary v =0 and therefore (1) reduces to

Vp=vViv. (5

In three dimensions this implies that the three denivatives of
p are known on the no-slip part of the boundary 00. Despite
this apparent over-specification, (4} and (5) do have a
unique solution since the source term on the right-hand side
of {4) is not arbitrary but a function of the velocity com-
ponents. Thus if ¥ and p evolve together then (4) and (5) will
remain soluble.

We still need to decide which pressure derivative condi-
tion to use in the numerical simulation. For inviscid flow
there is no problem since v-n =0 on #£2 and therefore only
the normal component of (5) is valid. However, for viscous
flow both Dirichlet and Neumann condilions may be
specified for the pressure if v is known. It is important that
the solution procedure is designed so that v and p remain
consistent with the over-specified pressure equation. Gresho
and Sani [ 147 show that if velocity boundary conditions are
prescribed then the proper choice of boundary condition for
(4) is to apply the normal component of (3) since this is the
only condition that can always assure that V.v=0 in 0.
Orszag, Israeli, and Deville [23] describe a number of
different algorithms for implementing no-slip boundary
conditions in order to achieve high-order accurate time
integrations of the incompressible flow equations.

In this paper we consider implicit and explicit splitting
schemes for solving a one-dimensional Stokes problem
which is a linear model that encapsulates two essential
features of the Navier—Stokes equations, namely, incom-
pressibility and pressure determination. The techrniques
proposed in this paper for the treatment of incompressibility
and pressure may be incorporated into more general algo-
rithms for solving the full Navier-Stokes equations or the
governing equations of non-Newtonian flow. A projection
method is used to ensure that the velocity field is divergence-
free at the end of each time-step. This type of splitting
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technique was first proposed by Chorin [9]. The need for
intermediate velocity boundary conditions is alleviated by
means of an algorithm of Ku, Taylor, and Hirsh [21]. This
is a generalizarion to spectral approximations of a technique
originally devised by Peyret and Taylor [24] for finite
difference discretizations. The technique uses the continuity
equation at interior and boundary nodes, or collocation
points, to obtain a system of algebraic equations for the
pressure unknowns without explicit imposing a pressure
boundary condition. Spurious pressure modes are
eliminated by seeking a solution for the pressure in a
suitably defined subspace of 2, the space of algebraic
polynomials of degree less than or equal to N, which is
orthogonal to the space spanned by these modes. This is
facilitated by means of a singular value decomposition
(SVD) in which rows of the system that correspond to zero
singular values are replaced by the algebraic conditions
which set these modes to zero. The velocity field at the end
of the projection step is then divergence-free and satisfies the
no-slip boundary conditions. An extension of this algorithm
to solve non-Newtonian flows is described. Several exam-
ples are considered illustrating the convergence properties
of the scheme.

The technique that we develop in this paper is computa-
tionally efficient particularly when used to solve time-
dependent problems. Since the coefficient matrix for the
pressure problem remains unchanged at each time step the
SVD of this matrix needs to be computed only once in a pre-
processing step before the time-stepping commences. The
inverse of the SVD of this coefficient matrix is easy to com-
pute since it involves the multiplication of two orthogonal
matrices. This inverse is then stored and used to calculate
the pressure at each time step. The $VD requires about 104°
floating point operations (flops), where n 1s the order of the
matrix. To find the pressure at each time step we require a
matrix—vector multiplication which is an O(n?) operation. A
similar number of flops are required in the implementation
of the influence matrix technique (see {19], for example).
However, that method requires far more storage than the
method proposed in this paper since the solutions to Q(n'/?)
Stokes problems need to be stored from a pre-processing
stage. Further, the influence matrix method produces a
velocity approximation which is identically divergence-free
only at the boundary collocation points. In contrast the
velocity approximation in the method we propose satisfies
the continuity equation exactly at all the collocation points
at each time step and for cartesian geometries it satisfies this
equaticn globally.

2. A MODEL STOKES PROBLEM

The Stokes problem represents 2 model which possesses
the same computational difficulties as the Navier—Stokes
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equations in terms of satisfaction of the continuity equation
and the determination of the pressure. Therefore in order to
simplify the details we describe implicit and explicit splitting
schemes for a model Stokes problem. The generalization of
the method to the Navier-Stokes equations is relatively
straightforward and will be discussed later.

Consider the 2D Stokes problem in the infinite slab
—ou < y< o0, |x| £ 1. The governing flow equations are

v s
= —Vp+vViy,

V.v=0,

- (6)
(7)

subject to no-penetration and no-slip boundary conditions
at x= 1 1. If we assume periodicity in the y-direction both
v and p may be decomposed into their Fourier modes:

['e]

vix, )= Y vMx 1)e™,
k=—cw
) (8)
plx.t)= Y pix e
k= —oo
Let us examine one particular mode and define
v(x, t) = vi(x, t) ™,
9)

plx, )= pF(x, 1) e®

The complete solution may be found by the principle of
linear superposition of solutions. If we insert (9) into (6)
and (7) we obtain the equations

du ép P u
e __ 9 cr_ 1
R 6x+v(5x1 k”)‘ (10)
v v,
J
X o ko=0, (12)
dx

where u=u", v=i*, and p= p*. We describe numerical

schemes for solving (10}-(12).

3. TIME SPLITTING SCHEMES

This class of numerical method was originally devised for
the incompressible Navier-Stokes equations by Chorin [9]
and Temam [ 307. The basic 1dea is to decouple the pressure
and velocity computations at each time step. The terms on
the right-hand sides of (10) and (11) are computed at the
old, new, or some intermediate time. Implicit treatments of
these terms enable larger time steps to be taken but require
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the-solution of a boundary-value problem at each time step.
On the other hand, explicit methods are easier to code and
require less computational work per time step but suffer
from severe time step restrictions in order to preserve the
stability of the scheme.

We first examine a fully implicit scheme for solving

(10)}-(12):

IMPLICIT SCHEME. Stage A.
u*_ur: apn
- _ 1
At ox’ (13)
p* —p”
— n 1
=" (14)
du*
M 4 ko* =0, (15)
ox
u*(x1}=0; (16)
Stage B.
HH_‘—‘*H* a2un+l
— —k2 s+ 1 17
At v( dx? " )’ (a7
urx+l_v* azvn+l N
Y ‘v( Ep —k*v ), (18)
TN+ =" (D) =0 (19)

The condition (15} in Stage A implies that the pressure at
the nth time step satisfies the Helmholtz equation
a*p” 1

220 __ Lyl
ox* kr _AIV v

(20)

Gottlieb and Orszag [17] argue that only the normal
velocity component can be specified at the boundary in
Stage A since this part of the splitting scheme effectively
deals with the inviscid part of the calculations at each time
step. The condition «* =0 at x = + 1 implies homogeneous
Neumann boundary conditions for p™:

op (£1)=0,

dx ' (2D

At the end of Stage A the flow is divergence-free in the
interior of the domain but there is a non-zero slip or tangen-
tial velocity that is O{d¢). The magnitude of this slip
velocity may be reduced to {41%) by a judicious choice of
the intermediate boundary condition on v* [ 7]. In Stage B,
the viscous part of the calculation, no-slip boundary condi-
tions are imposed on the velocity field but v**! does not
satisfy the incompressibility constraint. The failure to satisfy
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this constraint can lead to numerical instability because
mass is not conserved numerically.

The influence matrix or Green's function technigque
[19,20,7] may be used to obtain the correct pressure
boundary conditions necessary to satisfy the continuity
equation exactly in the discretized problem. The solution
procedure is based on the fact that the continuity equation
is equivalent to the Helmholiz problem for the pressure (20)
with zero right-hand side and the satisfaction of the incom-
pressibility condition on the boundary. In a pre-processing
step the solutions to a number, N, of steady Stokes
problems with linearly independent boundary values are
found, where N 1s the number of collocation peints on the
boundary. The solution at the end of each time step is
corrected by adding a linear combination of these N solu-
tions. The coefficients in this linear combination are chosen
so that the corrected velocity field satisfies the continuity
equation at the boundary collocation points. The coefficient
matrix of this system, known as the influence matrix, or its
inverse, is calculated and stored for subsequent use before
the time-integration process begins. This process is expen-
sive in two or three dimensions in terms of the amount of
memory required since the solutions to & steady Stokes
problems need to be stored as well as the influence matrix or
its inverse.

Farcy and Alziary de Roquefort [12] propose a similar
method for the pseudospectral approximation of the incom-
pressible Navier-Stokes equations. Their influence matrix is
global and is based on both the boundary and interior
collocation points. They approximate the full influence
matrix by a truncated one which has five non-zero diagonals
because of the high cost of storing and inverting the original
matrix. An ilerative method must then be used at each time
step to ensure that the incompressibility constraint is
adequately satisfied.

An alternative is the following explicit scheme for solving
(10}-(12):

ExpLICIT SCHEME.  Stage A.

u* —u" ot
=y -._——ik' " .
At ' (8x2 “ )

U* —17" aZvrr

— v __;k2 #

oGy e
Stage B.

PP R apn

A 8x’ (24)
U'H']—U* .

——27—=kﬂ , (25)
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B+
(3“6 +kvn+l =0’ (26)

X
wt(+£1)=0, (27)
2"+ (1) =0. (28)

In this scheme Stage A represents the viscous part of the
calculation. In Stage B a divergence-free velocity field is
found satisfying the no-slip boundary conditions.

Strictly speaking, the introduction of the intermediate
velocity ¥v* is not necessary as the viscous term could easily
be incorporated into Stage B, thus merging the two stages
into one. The advantage of retaining v* occurs when we
proceed to consider schemes for Navier-Stokes and
non-Newtonman flows. The differences occur in Stage A
only, leaving Stage B unchanged, thus simplifying both
the presentation and computation. The condition (26) in
Stage B implies that the pressure satisfies the Helmhoitz
equation

62prz B

ax? (29)

I
kipt=-—-V .v*
P At v

In this scheme the choice of pressure boundary conditions
for {29) is crucial in order to obtain a divergence-free
velocity field at the end of each time step. The degree to
which the incompressibility constraint is satisfied depends
on the spatial discretization.

4. DERIVATION OF THE DISCRETE
PRESSURE PROBLEM

Ku, Taylor, and Hirsh [21] suggest a method which
avoids the need to specify intermediate velocity boundary
conditions and Neumann conditions for the pressure in the
explicit scheme (22)-(28). The values of the intermediate
velocity components u* and v* at the boundaries are
eliminated from the algebraic system of equations for
the values of the pressure at the collocation points and the
system is closed by applying the continuity equation at the
boundary. The velocity field at the end of the full time step
is divergence-free at all boundary and interior collocation
points and satisfies the no-slip boundary conditions.

The Chebyshev-Gauss-Lobatto points are given by

X; = cos{mj/N). {30)
Note that x,=1, xy = —1 and that the interior points x,,
1€ /j<N—1, are the zeros of T (x), where T,{x) is the
Chebyshev polynomial of degree N. The Chebyshev polyno-
mials are orthogonal with respect to the weight function
(1 —x*)~" on the interval [ —1, 1] and are given explicitly
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by T,(x)=cos{ncos '(x)). Let f; denote the value of a
function f(x) at the point x;. The polynomial f,(x} which
interpolates these values at the N+ ! points x,, 0 j< N, is
given by k

“"*n

g (31)

where the expansion coefficients are defined in terms of the

fi by
. 2 N7 njn
fa= Y “cos (——), (32)
Ne, Zoe N
where
oo 2 if j=0,N,
T i 1SjEN—1.
The derivative of {,(x) at x = x; is given by
N
Ivxy= % Dy, (33
k=0

where D is the Chebyshev collocation differentiation matrix.
The matrix D is full and its entries are given by

(= 1)tk
(ﬂ_l)_T’ j?&k,
Ck(xj_xk)
Xy .
——k lgj=kgN-1,
b _d 20X I
J”“ﬁ AN+ 1 P
6 s J_ = M
2N+
—_ = :N
. T i=k

See Solomonoff and Turkel [29] for the derivation of these
entries.

Let ¢} denote the approximation to a variable g at the
point x, at the nth time siep. If all the variables are
expanded in terms of a truncated series of Chebyshev
polynomials of the form (31) then the coliccation equations
for the projection step of the explicit scheme (Stage B) may
be written in the form

Wt =ur — A1 z P 1<JSN=1, (34)
v;,’“:v. +Atkp, 1<j<N-—1, (35)
n+ a4k ;

Z Dl ket =0,  0<j<N,  (36)
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wptl=ultt =0, (37)
U8+1 rr+l 0 (38)

Equations (34}-(38) are 3(N + 1) equations for the 3(N + 1)
velocity and pressure unknowns. We substitute for #”*+' and
o7* 1 in (36) using (34), (35), {37), and (38). This yieids the

J
following system of equations:

N—1
(z D;: Z D:mpm kpj)

i=1 m="0

n+1 n+1
Jouo + D, gty

+ Z D, uf +ko¥, I1<jsN-1, (39)
i=1
N—1
At z DO: Z Dlmpm
i=1 m=0 N1 .
=Dooup™' + Doyttt tkvg i+ Y Do uk,  (40)
i=1
N—1
At Z DN: Z Dlm.pm
i=1 m=0
=Dy oupt !+ Dy ptt H kot + Z Dy uf. (41)

i=1

Equations (39)-(41) represent a system of N+ 1 linear
equations for the unknown pressure values at the colioca-
tion points. When A =0 this system bhas rank N—-1;
otherwise it has rank N + 1. The rank deficiency is due to
the presence of spurious pressur¢ modes. These will be
defined in the next section, together with a technique for
solving the system for & =0.

We can show that the above system is consistent with a
discretization of the pressure Poisson equation (PPE)
subject to a Neumann boundary condition derived from
the normal momentum equation [ 14 ]. Let us examine (39),
for example. If we substitute for the intermediate velocity
variables in (39) using Stage A of the explicit scheme and
rearrange the resulting equation we arrive at the formula

(5005 s 10)

i=1

N1
= [D, oy T E D AT Y DT+ kuj]

i=1

N—1 azn
+var Yy D”(a 5 —k*u ”)

i=1

a:’. n
+vAl( Uz——klv”),
ox ;

Now consistent with forward Euler, use u}™' = uj) + 4t &}

1<jEN—1.
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and "} =u', + A1 4%,; then the first term on the right-hand
side is thus

I ]

N
AUD il + D, g7+ Y. Dyl + kol
i=0

Since V -¥" =0 this reduces to
AND, otig + Dy yuly)

Thus the final discrete PPE is

N N
(Z Dy, 2 D.‘,mpm‘kzpj)
=0 m=0

. Fu o,
=Dj!0<u0+ Y DomPm—V 6x2_ku .

m=0
n A azun 2.H
+Dnlay+ Z DymPm—V 2 Z—k u
=0 X N
N aZun
+v Yy D-y,-( fklu")
ST o ;

2un

+v|=——Kv"), 1<j<N-—L
(ox2 v),-' !

The terms in brackets are approximations to the normal
momentum equations at the boundaries x= + 1. Similar
equations are obtained for j =0 and j = N. Thus the system
{39)-(41) corresponds to the discrete PPE and the proper
boundary condition for the PPE. Note that since spectral
methods yield global approximations each of the discrete
equations is influenced by the boundary conditions.

5. TREATMENT OF SPURIOUS PRESSURE MODES

Let py(x) be defined by
(42)

then the spurious modes are defined to be those non-
constant modes T, (x) for which

d
~(Ta)=0  at x=x;, 1Sj<N-1 (43)

The pressure only occurs as a gradient in the momentum
equation and, since this equation is collocated at the inte-
rior Chebyshev-Gauss—L.obatto nodes, the modes defined
by (43) are termed spurious because they have no effect on
the velocity. When k = 0 there is one spurious mode T y(x).
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Further, the constant mode T,{x) has no effect on the
velocity since it represents the mean value of the pressure.
Any solutica procedure for (39)—(41} must take proper
account of these modes; otherwise the numerical solution
will be polluted. Spurious pressure modes were first
characterized mathematically by Bernardi, Maday, and
Métivet [6].

In Section 4 we assumed that «, v, and p belonged to the
same space %, of algebraic polynomials of degree less than
or equal to N and therefore we expanded them in terms of
truncated Chebyshev series of the same order. However, the
approximation scheme will fail to determine a unique
pressure p, because of the rank deficiency of the system
(39)-(41) when k£ = 0. We are, in effect, secking to determine
the pressure in the wrong approximation space. The velocity
and pressure spaces must satisfy a compatibility condition
which is equivalent to the Babu¥ka-Brezzi condition in
finite clement theory. Therefore, in order to have a well-
posed problem we must find a solution p, in a suitably
defined restricted subspace 2, of #,. We define 2, to be the
subspace of &, which 1s orthogonal to the linear subspace
spanned by the constant and spurious pressure modes. We
must therefore determine p,, in 2, in order to satisfy the
compatibility condition.

The linear system (39)-(41) for the pressure values p;,
0 < j< N, may be written as

Ap=Dh, {44}
where A is a matrix of order N+ 1 and rank N—1 when
k =0. Direct methods can be used to solve systems of the
form (44) even when A is singular, Provided that the system
is consistent then it can be solved using Gaussian elimina-
tion with the help of natural rounding error. Schumack,
Schultz, and Boyd [27] use standard matrix solvers to
obtain solutions to singular formulations. Bernardi, Canuto
and Maday [ 5] show that the existence of spurious pressure
modes does not pollute the velocity solution. However,
since the gradient of the spurious pressure modes vanishes
only at the collocation points these modes have no influence
and hence no polluting effect on the pressure gradient at
these points. For this reason the pressure gradient is “good”
only at the collocation points. However, at points other
than collocation points, the presence of spurious modes will
pollute the pressure gradient, In order to obtain an
unpolluted pressure one has to extract, using some sort of
filtering technique, that part of the computed pressure
which is orthogonal to the space spanned by the spurious
modes.

An alternative way of finding a solution in 2, is to
augment the system (44} with the conditions which set the
constant and spurious modes to zero, ie.,

{45)

ﬁ():o’ ﬁN=0,
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and then perform a SYD on the augmented system. In terms
of the nodal pressure values we may write (45) in the form

3Pot Pt Py i +1py=0, (46)
IPo— Pt =Pyt 3py=0 (47)

We write the augmented system as
Ap=b, (48)

where A is a (N +3)x (N+1) matrix and b is a vector
obtained by adding two zero rows to b. There exists
orthogonal matrices  and R of order (N + 3) x (N + 3) and
(N4 1)x (N+1), respectively, whose columns comprise
the left and right singular vectors of A, respectively, such
that

A=0QDR", D= (10)),
where D =diag(,,.., Ay, () is the diagonal matrix con-
taining the non-zero singular values of 4. (See Golub and
Van Loan [16], for example). In view of this decomposition
we may write (48) in the form

QDR p=b,

which after premultiplication by QT gives

DRTp=0"h. (49)
This is a consistent system of equations for p, provided that
qfﬁ =0 for i=N+2, N+3, where q, denotes the ith
column of Q. Therefore the system is solvable, provided that
the right-hand side vector b is orthogonal to the space
spanned by the left singular vectors of 4 corresponding
to the two zero singular values. This is precisely the space
spanned by the spurious pressure modes. These conditions
are similar to the solvability conditions derived by Sani
et al. [26] for finite element approximations to the incom-
pressible Navier-Stokes equations. In some way these two
sets of conditions must be equivalent since they have the
same effect, namely, that they ensure that mass is conserved
globally and that the pressure does not contain a compo-
nent in the space spanned by the spurious pressure modes.
Therefore, if we define  to be the leading (N + 3)x (N + 1)
submatrix of @ then p can be determined from
p=RD '07h. (50)

Thus at the end of the projection step of the explicit
algorithm the velocity field satisfies globaily the incom-
pressibility constraint and the no-slip boundary conditions.

PHILLIPS AND ROBERTS

Furthermore, the pressure is free from spurious and
constant modes.

For non-periodic problems in two dimensions there are
seven spurious pressure modes, as well as the constant one,
when a collocation grid composed of the Cartesian product
of the Chebyshev—Gauss—Lobatto nodes is used (Bernardi,
Canuto, and Maday [S]) HQ2=[—1,1x [ -1, 1] these
modes are defined specifically by

(1) Talx), Tu( ), Talx) Taly),
(i) (1£x) Tra(x)(1£ y) Th(p).

The gradient of the modes in (i) vanishes at the interior
Chebyshev-Gauss-Lobatto points. The modes in (i) are
referred to as the corner modes since they vanish at all
interior and boundary Chebyshev—Gauss—Lobatto points,
except at one corner. In addition the gradient of these
modes vanishes at all nodes except those which lie on the
two straight lines which do not form the corner. Therefore
the spurious and constant pressure modes span a subspace
of dimension 8.

An important peint to note here is that the value of the
pressure at the four corner points does not affect the
pressure values at the other collocation points. The pressure
at the corners is determined by imposing the continuity
equation at these points and eliminating the values of v**+!
which occur at the interior boundary collocation points
using the discrete form of (24) and (25). This requires the
values of the intermediate velocity at the interior boundary
collocation points. The determination of the pressure
proceeds as follows. First, we impose the continuity equa-
tion at all collocation points to obtain a system of the form
{44) for the pressure values where A is now a matrix of order
M=(N+1)* and rank M —4. Second, we augment this
system by the algebraic equations which set the spurious
and constant modes to zero, 1.e.,

(51)

ﬁo,o =Pro= Ijo,N = ﬁN.N =0.

Finally, we perform as SVD on the augmented coefficient
matrix and determine the pressure as in the 1T case. At the
end of this process the pressure is orthogonal to the sub-
space spanned by the spurious and constant modes and the
velocity field is divergence-free at all boundary and interior
collocation points,

The truncated influence matgix of Farcy and Alziary de
Roquefort [12] is shown to be regular even though the
original influence matrix has rank M — 8. However, Farcy
and Alziary de Roquefort state that there is no physical
justification for this. Their method requires the solution of
M Stokes problems in a pre-processing stage. The amount
of work involved here can be substantial, particularly if Af
is large. An iterative method is necessary to ensure that the
velocity field is sufficiently divergence-free. The oscillations
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in the solution are removed by filtering out the spurious
pressure modes at the end of each time step. In contrast the
method propesed in the present paper suitably modifies the
algebraic system for the pressure so that the pressure is
orthogonal to the space spanned by the spurious modes.

Schumack, Schultz, and Boyd [27] have shown that
there are alternative ways of eliminating spurious pressure
modes in spectral methods when the Stokes equations are
solved directly without resorting to staggered grids. They
obtain a nonsingular system in a number of ways, including
the application of the normal momentum equation on the
boundary, the use of a lower order basis for the pressure
approximation and over-determination. They solve a weak
formulation of the problem and, because of the choice of
pressure space used, a globally divergence-free velocity field
is not obtained. Our scheme produces a velocity field which
is globally divergence-free and not just at the coilocation
points. The space which we have chosen for the pressure has
been shown to result in a well-posed problem for Stokes
flow and guarantees spectral accuracy of the approxima-
tions {[5]). Thus the optimality of the approximations used
in the present paper is the main difference between the two
approaches and the existence of a formal error analysis puts
the proposed method on a firm theoretical basis.

Although the modified pressure equation (44} is singular
it may still be solved by standard Gaussian elimination
techniques because roundoff errors result in small but non-
zero pivots. The pressure gradient field is accurate at the
collocation points which therefore gives an accurate velocity
field. The pressure field itself is polluted by the spurious
pressure modes as described above. If accurate pressure
values are required, the spurious modes may be removed by
subsequent filtering, A straightforward way of filtering is to
take the discrete transform of the pressure field, set the
appropriate coefficients to zero, and transform back.

When using our scheme to obtain steady state results, the
PPE operator is identical at each time step. For problems
taking more than a trivial number of time steps, it is more
efficient to muitipiy by the inverse of the PPE operator
rather than retain the LU decomposition and perform a
forward and back substitution at each time step.

The condition number of the discrete PPE operator
precludes the use of its inverse, but the SVD with the addi-
tion of zero pressure mode conditions gives an accurate
inverse which may be stored and used at each time step. In
this case it is unnecessary to filter the pressure field. The
initial computational effort in performing the SVD and
cafculating the inverse is more than compensated by the
saving accumulated at each subsequent time step.

Our SVD scheme sets the spurious pressure modes to
zero before solving the PPE, therefore giving a non-
singular, moderately conditioned system. It does not
remove solvability constraints on the velocity field in order
that the PPE is consistent and these constraints are an area
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for further investigation. This issue is addressed in the finite
element context by Sani et al. [267. For the examples given
in this paper, the PPE is always consistent,

6. A SPLITTING SCHEME FOR THE
NAVIER-STOKES EQUATIONS

The time splitting scheme for the Navier-Stokes
equations (1)-(2) is a straightforward extension of that for
the Stokes problem.

TRANSIENT NAVIER-STOKES SCHEME. Stage A.

% __ g

! sz v Vv —v.Vy) (52)
Stage B.
YUl ¥
— _V n

yT P (53)
Vovitl= (54)
v=0 on the no-slip boundary.  (55)

The stability of the scheme is governed by the viscous
term v At Vv for small values of the Reynolds number.
When the problem is convection deminated the stability of
the scheme is governed by the usual CFL condition.

7. A SPLITTING SCHEME FOR
NON-NEWTONIAN FLOWS

The eguations governing the transient flow of an incom-
pressible non-Newtomian fluid of Oldroyd B type are

p(?j—:+vAVv)=—Vp+V-T, (56}
V.v=0, (57)

\2 v
T+4i, T=2nd+ 4,4d), {58)

where T is the extra-stress tensor, d = 5(Vv+VvT) is the
rate of deformation tensor, p is the density, # is the viscosity,
and A, and A, are characteristic relaxation and retardation
times for the fluid, respectively. In the following we choose
A, according to the relationship i,=1i,. The upper-
convected derivative of T is defined by

v AT
T=—+v-VI-Vv.T-T (V)" (59)
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We may decompose the extra-stress tensor T into its
viscoelastic and viscous parts as

T=142y,4d, (60}

where the viscoelastic part, 1, satisfies

T+, 1=2md (61)

The constants 7, and #, are defined by the relationships

—_—

. i
=1, +4s, -J-'z=‘$;\1-

The time splitting. scheme for the solution of non-
Newtonian flow probiems follows ciosely the explicit
scheme we have already described for Newtonian flows.
However, for non-Newtonian problems the constitutive
equation (58) must also be advanced in time in order for the
components of extra-siress to be updated at the new time
level. Due to the complicated form of the constitutive
relationship this equation is treated explicitly using the
forward Euler method.

TRANSIENT NON-NEWTONIAN SCHEME. Stage A.
Ay
— ("t =t =[2nd—1t—2,[v-Vt
At
—{Vv.t}—{t-(V¥)T}]17"  (62)
Stage B.
5}“*””# (Veortn, Viv—pv.Vv]".  (63)
Stage C.
Lyt —vy= v (64)
At
V.y"tl= (63%)
v=0 on the no-slip boundary. (66}

The constitutive relationship is treated explicitly in
Stage A over the whole time step. The determination of
the pressure and the treatment of the incompressibility
constraint are treated again using the method of Ku,
Taylor, and Hirsh [21] to modify the discrete derivative
operators in the derivation of the pressure problem.
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8. NUMERICAL RESULTS

Poiseuille Flow in a 2D Planar Channel

We consider the flow of an Oldroyd B fluid in the pianar
channel —1<x<g1, —1<€ y<1 with entry and exit sec-
tions at x= —1 and x =1, respectively. The walls y= +1
are no-slip boundaries. We assume Poiseuille flow at entry
with a mean flow rate of unity which implies that for 1 = 0,
-l<y<l,

”(_l,y,f)=4§“_)’2), U(‘I,}’J)=0v
The entry conditions for stress are obtained from (58) and

(59} by setting ail the x-derivatives to zero and also v=20.
Thus atentryfor t 20, -1 y<1,

Tx,t(; l’ Y, t) = %'1("1 - )*‘2) yz’

Tol=Lyt=—=3n,  T,l-11)=0
At exit we impose the same parabolic profile as that
specified at entry. Of course, the steady state solution is also
fully developed and repeats the entry profile at any cross
section of the channel. In our calculations we specify the
values of the flow variables in the interior of the domain to
be zero at time 1 ={0. The algerithm is then allowed to run
until the steady state solution is reached. The tolerance for
all the numerical examples is that the relative error of all the
variables 1s less than 107 A smaller value for the tolerance
was also used to ensure that steady state is reached.
Results for the 2D channel flow obtained on an 8x8
mesh are shown in Tabie I for different values of 4,. In the
absence of inertia it is possible to converge to a steady state
solution in far fewer iterations using the method of false
transients. This method was first introduced by Mallinson
and De Vahi Davis [22]. They observed that a lower time
step restriction is generally needed when solving a system of
time-dependent equations than when solving a single equa-
tion. However, instabilities which may occur if this stability
condition is violated may.be controlied if different time steps
are used for the separate equations. In the present context
the method essentially uses different time steps for the

TABLEI

Oldroyd-B Results for 2D Channel Flow on an 8 x 8 Mesh

Ay g At nsteps
0.0 1.0 1.0-3 407
0.1 1.0 10-3 1247
0.1 LO+2 1.0—1 467
1.0 1.0 10-3 16466
1.0 1.0+2 1.0-1 681
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TABLE II

Time Step and Convergence Speed for the Newtonian 2D
Regularized Driven Cavity for a 24 %24 Mesh (Convergence
Criterion 10~%)

Re v Ax At/Re nsteps values of '11-
0 10+0 25-5 — 4959
! L0+0 23-3 235 4959 Flow in a Regularized Driven Square Cavity
100 1.0-2 253 25-5 5091
200 50-3 5.0-3 25-5 4933 We consider the flow of a Newtonian fluid in the
400 25-3 10-2 23-3 3953 regularized driven square cavity 0 < x < 1,0< y < | as used
1000 1.0-3 20-2 25-5 3709 . d g hi
2000 50_4 202 L0—s 7154 by Demaret and Deville [10] and Shen [28]. In this
) ' : problem the flow is driven by a theoretical horizontal
TABLE 111

momentum and constitutive equations, The effective time
step for the momentum equation is 4t/p so that for p > 1 we
effectively use a smaller time step for the momentum equa-
tion than for the constitutive equation. This has a dramatic
effect on the number of iterations required to reach steady
state and a more marked reduction is achieved for higher

Properties of Vortices for the Newtonian 2D Regularized Driven Cavity

Re Secondary Secondary Secondary
Grid Reference Primary bottom right bottom left top left
0 Present —B8.3618-2 1.6600 — 6 1.6600 —6 —
24 x 24 (0.500,0.778) (0.962,0.038) (0.038, 0.038)
1 Present —8.3617=2 16702 -6 1.6500 — 6 —
24 x 24 (0.500, 0.778) (0,962, 0.038) (0.038, 0.038)
100 Present —8.3627 -2 48040 —6 12312 -6 —
24 x 24 (0.598,0.757 (0.952, 0.048) (0.038, 0.038)
100 Shen —8.368 -2 46676 — 6 1.3987—6 —
17 %17 (0.609, 0.750) (0.953, 0.047) {0.031, 0.031)
200 Present —8.4504 —2 3.3750-—5 17731 -6 —
24 x 24 (0.621,0.691) (0929, 0.084) (0.038,0.038)
400 Present —85877-2 2.5487 —4 57072 —6 —
24 x 24 {0.573,0.621) (0.902,0.113) (0,048, 0.038)
400 Shen —8.584 -2 19774 — 4 63146 -6 e
17x 17 (0,578, 0.625) (0.922,0094) (0.031,0.047)
1000 Present —87128 -2 92882 —4 8.6133—35 —
24 % 24 {0.549, 0.573) (0.870,0.113) (0.071,0.071)
1000 Shen —8715=2 56762 —4 82841 -5 —
25x25 (0.547, 0.578) (0.922,0.094) (0.078, 0.063)

2000 Present —8.7613-2 15964 —3 363344 10133 —4
24 %24 (0.525, 0.549) {0.854,0.113) (0.084, 0.098) {0.038, 0.887)
2000 Present —8.7513--2 1.5833—3 3.5541 -4 7.3403 — 5
32x32 (0.525, 0.549) (0.854, 0.098) (0.084, 0.098) (0.038, 0.887)
2000 Demaret —8.7836 -2 1.6062 —3 3.5293—4 1.0251 —4
25x 25 Deville (0.529,0.553) (0.850,0.103) (0.087, 0.094) {0.041, 0.891)
2000 Shen —8762 -2 8.0667 — 4 31772 -4 1.4497 —5
25%x25 (0.531,0.547) {0922, 0.094) (0.078, 0.094) (0.031, 0.092)
2000 Shen —8.716 -2 8.084] —4 3.5432 -4 1.7143 -5
13x33 (0.531,0.547) (0.922, 0.094) (0.094, 0.094) (0,031, 0.092)
4500 Present —8.7979 -2 2.0700-73 79866 —4 6.8318—4
32 x32 (0.525,0.537) (0.817, 0.084) (0.084, 0.121) (0071, 0.902)
4500 Demaret —88756—2 21204 -3 78872 -4 6.3715—4
29%x29 Devilte (0.521, 0.539) (0.814, 0.082) (0.081, 0.120) (0.087, 0.915)
5000 Present —8.7984 -2 21168 — 3 84659 —4 77873 —4
32x32 (0.525,0.537) (0.808, 0.078) (0.084, 0.121) (0.078, 0.902)
5000 Shen —3.803 -2 774754 7.5268 —4 6.7780 —4
33x33 (0.516, 0.531) (0922, 0.094) (0.094, 0.094) (0.078, 0.092)

581/105/1-11
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£0E+00

FIG. 1. Streamlines for the regularized driven cavity, Re =0.

motion of the top lid of the cavity such that the horizontal
velocity component there is given by u(x, 1) = 16x?(1 — x)*
and the vertical component is zero. This velocity distribu-
tion removes the singularities at the top corners of the
standard driven cavity and therefore preserves the high
accuracy of the spectral space discretization. The boundary

E0E-+00

FIG. 2. Streamlines for the regularized driven cavity, Re=1,
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7.8E-0,

4

FIG. 3. Streamlines for the regularized driven cavity, Re = 100.

B0E+00

conditions on the other sides are zero velocity no-slip
conditions.

Table IT presents details of the time steps and con-
vergence speed for the Navier—Stokes scheme for different
Reynolds numbers on a 24 x 24 mesh. Inspection of (52)
shows that the nonlinear term is multiplied by Ar while the

P

FIG. 4. Streamlines for the regularized driven cavity, Re = 200,
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FIG. 5. Streamlines for the regularized driven cavity, Re =400.

viscous term is multiplied by v A7 = A¢/Re which is the
factor that to a large extent governs the stability of the
scheme. If the Reynolds number is increased by decreasing
the kinematic viscosity v, it may be seen that Ar may be
increased gccordingly in order to keep the term At/Re as
large as possible, but within the stability [imit. Thus a larger

BB
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F1G. 7. Streamlines for the regularized driven cavity, Re = 2000.

time step is permissible as the Reynolds number is increased
and results in a large saving in the computer time required
to reach steady state. The maximum time step which gave
stability was obtained experimentally for each Reynolds
number; for Re<2000 we need At/Re<2.5x10° for
stability. At Re = 2000 a smaller value of 4¢/Re is required

OO0

FIG. 6, Streamlings for the regularized driven cavity, Re = 1000.

FIG. 8. Streamlines for the regularized driven cavity, Re = 5000.
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which suggests that the convective term is now the main
influence on the stability of the scheme,

Figures | to 8 show streamline contours for different
values of the Reynolds number in the range 0 to 5000,

Table I gives a quantitative comparison of our present
results with those obtained by Demaret and Deville [i0]
and Shen [28] for Reynolds numbers up to 5000. In general
there is good agreement for the positions of primary and
secondary vortices and the associated values of the stream
function. For a Reynoids number of 2000 the results for the
sccondary bottom right and top left vortices agree with
Demaret and Deville, whereas Shen predicts lower values of
the stream function. Also, there appear to be typing errors
in the values for the y-coordinate of the top left vortex in
Shen’s paper.

Our results indicate that weak tertiary vortices appear at
the bottom right for Re=400, at the bottom left for
Re = 1000, and at the top right for Re = 5000.

Flow between Eccentrically Rotating Cylinders

We consider the flow of an upper-convected Maxwell
fluid (UCM) between eccentrically rotating cylinders: The
UCM model is obtained as a special case of the Oldroyd-B
constitutive equation by setting 2, = 0. The flow geometry is
shown in Fig. 9. The inner and outer cylinders are of radius
R, and R, respectively, with the distance between the
centres of the cylinders given by e. The outer cylinder is kept
at rest, while the inner cylinder is rotated at an angular
velocity €. The eccentricity is defined by e=e/fc, where
¢=R,—R, is known as the gap. The Deborah and
Weissenberg numbers are non-dimensional elasticity
parameters and for this flow they are defined by

De=4,2,

. R
We=4,0—
¢

Ry

FIG. 9. Geometry of eccentric eylinder model.
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TABLE IV

UCM Results for Eccentric Cylinder on an 8 x8 Mesh with
D=003125, ¢c=0.00004, and £ = 0.1

A P At nsteps Fy F, C

0.0 10 50~10 641 00 450+4 61240
L0—6 2043 10-6 683 75240 430+4 61240
10-5 20+3 10-6 600 75241 450+4 61240
10—-4 2043 10-6 2201 75242 450+4 61240
1.0~-3 20+3 10-6 18802 73743 441+4 6.12+0

The use of cylindrical bipolar coordinates enables the
region between the cylinders to be mapped conformally
onto a concentric geometry, where a Fourier-Chebyshev
basis is used to approximate the flow variables. The
cylindrical bipolar system (¢, 1) (see Fig. 10) is given by

_asinh¢

a sin #
s y=
X X

3

where y = cosh & + cos n and a is a constant depending on &,
R,, and R The Stokes equations in terms of bipolar
coordinates are given in Roberts er a/. [25].

Numerical results are presented in Table IV for ¢ =0.1 on
an 8 x 8 mesh and in Table V for e=0.5 on a 12 x 12 mesh.
In addition to parameters relating to the performance of the
algorithm the couple and components of the force per unit
length on the journal are also given. We see that by using
the method of false transients for nonzero values of 4; we
are able to use a time step that is at least 10* times the size
of the time step required for the momentum equation. This
enables greater efficiency when only the steady state solu-
tion is required. For nonzero values of 2, the horizontal
load increases linearly with A, and the resultant force no
longer acts normai to the line joining the centres of the
journal and the bearing.

The physical relaxation times for oil are in the range
10~%-10~°. We have obtained results for considerably
higher values of 4; without noticing any nonlinear effects. In

TABLE V

UCM Results for Eccentric Cylinder on a 12x 12 mesh with
D=0.03125, c=0.00004, and ¢=0.5

i p At nsteps Fy Fy C

0.0 1.0 30-11 4622 0.0 230+5 92540
10-6 1.0+4 30-7 4609 448+1 230+5 92440
10-5 10+5 390-6 4609  448+2 23145 92440
10-4 1046 30-5 4738 448+3 23145 92440
10-3 10+6 30-5 4558 4.18+4 22445 9.18+0
15-3 10+6 30-5 4585  590+4 218+5 9.12+0
20-3 10+6 30-5 19414 741 +4 21145 90740
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FIG. 10. Bipolar coordinate system.

the example with ¢=0.5 the Weissenberg number in the
region of smallest gap is approximately 780. These physical
choices of the parameters are a severe test for any numerical
algorithm. We obtain velocity fields that are divergence-free
to machine accuracy at the collocation points as a result of
the projection method that we use in our numerical scheme.

Beris, Armstrong, and Brown [ 4] have calculated the
viscoelastic flow between eccentrically rotating cylinders for
a variety of constitutive relations using both finite element
and spectral/finite ¢lement methods. The use of the latter
method for the UCM model alleviated numerical oscilla-
tions that were present in the earlier finite element work and
resolved the stress boundary layers that exist for high
elasticity, as measured by the Deborah number. The use of
Fourier expansion functions in the azimuthal direction
enabled solutions to be calculated for higher values of De
than were possible using the finite element method.
However, the method was less successful at predieting the
flow and stress fields for high De at large eccentricity. The
use of the fully spectral discretization described in this paper
has circumvented this difficulty and enabled solutions to be
obtained for large values of the relaxation time,

9. CONCLUSIONS

In this paper we consider algorithms for the transient
simulation of incompressible Newtonian and non-New-
tonian flows. Particular attention is given to the satisfaction
of the incompressibility constraint and the determination
of the pressure when spectral cxpansions are used to
approximate the flow variables. If the steady state solution
is required we advocate the use of the method of false
transients which greatly reduces the amount of computa-
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tional effort required by using a much larger time step for
the constitutive equation.

Implicit and explicit schemes are described for solving a
one-dimensional Stokes problem which is 2 model which
possesses the same computational difficulties as those
associated with the Navier—Stokes equations when written
in primitive variable form. A projection method is used to
ensure that the velocity field is divergence-free at the end of
each time step. An algorithm of Ku, Taylor, and Hirsh [217]
circumvents the need to impose values of the intermediate
velocity components at the boundary. The algebraic system
for the pressure is closed by imposing the continuity equa-
tion at the boundary collocation points in addition to the
interior points. The resulting system is singular due to the
presence of spurtous pressure modes. This difficulty is over-
come by seeking the pressure in a suitably defined restricted
subspace of the space of algebraic polynomials of given
degree which is orthogonal to these modes. This is achieved
computationally using the singular value decomposition in
which rows of the pressure system which correspond to
singular values are replaced by conditions which set these
modes to zero. At the end of each time step the pressure is
free from spurious modes, the velocity field is divergence-
free at all boundary and interior collocation points and the
no-slip boundary conditions are satisfied. In addition, for
problems defined in cartesian domains the velocity
approximation 1s globally divergence-iree.

The numerical results demonstrate that spectral methods
arc capable of solving incompressibie flow problems of
practical importance for realistic values of the material
parameters.

ACKNOWLEDGMENTS

This work was partly funded by Shell Research Ltd., Thornton, UK.
We also thank a reviewer for sugpesting several improvements to the
manuscript.

REFERENCES

1. A. Beris, R. C. Armstrong, and R. A. Brown, J. Non-Newronian Fluid
Mech. 13, 109 (1983).

2. A N. Beris, R. C. Armstrong, and R. A, Brown, J. Non-Newtonian Fluid
Mech. 16, 141 (1984).

3. A.N. Beris, R. C. Armstrong, and R. A. Brown, J. Non-Newtonian Fluid
Mech. 19, 323 (1986).

4, A.N. Benis, R. C. Armstrong, and R. A, Brown, J. Non-Newionian Fluid
Mech, 22, 129 (1987).

5. C. Bernardi, C. Canuto, and Y. Maday, C.R. Acad. Sci. Paris Ser. 1303,
971 (1986).

6. C. Bernardy, Y. Maday, and B. Metivet, C.R. 4cad. Sci. Paris Ser. f
303, 163 (1986).

7. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A, Zang, Speciral
Methods in Fluid Dynamics (Springer-Verlag, Berlin, 1987).

8 A. ). Chorin, J. Comput. Phys. 2, 12 (1967).

- AL L Chorin, Marth. Compur. 22, 745 {1968).

N2



164

10.
11.

12,
13.
14.

15.

16.

19.

20.

P. Demaret and M. Deville, J. Comput. Phys. 95, 359 {1991).

M. Devilte, L. Kleiser, and F. Montigny-Rannou, fnt. J. Numer.
Methods Fluids. 4, 1149 {1984).

A. Farcy and T, Alziary de Roquefort, Comput. & Fluids 16, 459 {1988},
M. Fortin, R. Peyret, and R. Temam, J. Méc. 10, 357 (1971).

P. M. Gresho and R. L. Sani, Int. J. Numer. Methods Fluids 7, 1111
(1987).

P. M. Gresho, Preprint UCRL-JC-105019; Adv, in Appl. Math.
submitied.

G. H. Golub and C. F. van Loan, Matrix Computations {The Johns
Hopkins Univ. Press, Baltimore, 1983).

. . Gottlieb and 8. A. Orszag, Numerical Analysis of Spectral Methods:

Theory and Applications (SIAM-CBMS, Philadelphia, 1977).

. J. C. Heywood and R. Rannacher, S7AM J. Numer. Anal. 23, 750

{1986).

L. Kletser and U. Schumann, in Proceedings, 3rd GAMM Conf.
Numerical Methods in Fluid Mechgnics, edited by E. H. Hirschel
(Vieweg, Braunschweig, 1980).

L. Kleiser and U. Schumann, in Spectral Methods for Partial Differen-
tigl Equations, edited by R. G. Voigt, D. Gottlieb, and M, Y. Hussaini
(SIAM-CBMS, Philadelphia, 1984).

21.

22,

23.

24.

25,

PHILLIPS AND ROBERTS

H. C. Ku, T. D. Taylor, and R. S. Hirsh, Comput. & Fluids 15, 195
(1987).

G. D Mallinson and G. de Vahl Davis, J. Comput. Phys. 12, 435
(1973).

S. A. Orszag, M. Tsraelli, and M. O. Deville, J. Sci. Compur. 1, 75
(1986).

R. Peyret and T. D. Taylor, Computational Methods in Fluid Flow
{Springer-Verlag, Berlin, 1934).

G. W. Roberts, A. R. Davies, and T, N. Phillips, fnt. J. Numer. Methods
Fluids 13, 217 (1991).

. R. L. Sani, P. M. Gresho, R L. Lee, and D. F. Griffiths, fnt. J. Numer.

Methods Fluids 1, 17 (1981).

. M. R. Schumack, W. W. Schultz, and L. P. Boyd, J. Comput. Phys. 94,

30 (1991).

. J. Shen, J. Compui. Phys. 95, 228 (1991).

. A. Solomonoff and E. Turkel, J. Compusr. Phys. 81, 239 (1989).

. R. Temam, Bull. Soc. Math, France 96, 115 (1968).

. R. Temam, Navier-Stokes Eguations (North-Holland, Amsterdam,

977

. M. M. Yanenko, The Method of Fractional Steps (Springer-Verlag,

New York, 1971).



